December 5, 2024

จับตา 7 แนวโน้มของ AI และระบบอัตโนมัติในปี 2025 

โลกการทำงานหมุนเปลี่ยนไปรวดเร็ว และก้าวกระโดดแบบที่ไม่เคยมีมาก่อน เราพาไปดูเครื่องมือที่ผลักดันการเปลี่ยนแปลงนี้ กับ 7 แนวโน้มที่กำลังขับเคลื่อนการพัฒนาเทคโนโลยีปัญญาประดิษฐ์และระบบอัตโนมัติเหล่านี้ไปข้างหน้า สำหรับผู้ที่สนใจบทความนี้จะช่วยให้เข้าใจทั้งแนวโน้ม พร้อมยกตัวอย่าง use case ที่เข้าใจง่าย และเราเติมความเข้าใจด้านศัพท์เทคนิคด้าน Automation & AI เพื่อเตรียมพร้อมสำหรับปี 2025 ที่กำลังจะมาถึง เราเรียนรู้ไปพร้อมกัน

1. AI เชิงการตัดสินใจ และช่วยทำงานแทน (Agentic AI)

Agentic AI คือรูปแบบปัญญาประดิษฐ์ที่พัฒนาไปอีกขั้น ด้วยความสามารถในการ “คิดและช่วยทำ” เช่น การวางแผน (Planning) การตัดสินใจ (Decision-Making) และการดำเนินการ (Execution) โดยอัตโนมัติ ระบบนี้สร้างขึ้นจาก Large Language Models (LLMs) และ Large Action Models (LAMs) ซึ่งช่วยให้ AI ตอบสนองต่อคำสั่งแบบภาษา (Natural Language Prompts) และเหตุการณ์ต่าง ๆ ได้

ศัพท์เทคนิคน่ารู้

  • LLM (Large Language Model): โมเดลที่เข้าใจและสร้างภาษาธรรมชาติ
  • LAM (Large Action Model): โมเดลที่เน้นการตัดสินใจและการปฏิบัติ
  • ตัวอย่าง: AI ในทีม customer service หรือ call center ใช้ Agentic AI เพื่อประมวลผลคำถาม วิเคราะห์ปัญหา และให้คำตอบโดยไม่ต้องพึ่งมนุษย์ ลดเวลาเฉลี่ยต่อการแก้ไขปัญหาได้กว่า 14%

2. การประสานงานแบบเอเยนต์ (Agentic Ecosystem)

การสร้างระบบที่ช่วยให้องค์กรสามารถผสานงานระหว่าง AI เอเยนต์ (Agentic AI) หุ่นยนต์ (RPA: Robotic Process Automation) และมนุษย์ได้อย่างไร้รอยต่อถือเป็นหัวใจสำคัญ แนวโน้มนี้ต้องอาศัยเทคโนโลยี Orchestration Platforms ที่ซับซ้อน

ศัพท์เทคนิคน่ารู้

  • Orchestration Platform: แพลตฟอร์มสำหรับจัดการการทำงานร่วมกันระหว่างระบบต่าง ๆ
  • Human-in-the-Loop (HITL): ระบบที่ให้มนุษย์สามารถควบคุมหรือแก้ไขการทำงานของ AI ได้ในกระบวนการที่สำคัญๆ มนุษย์ยังคงจำเป็นต้องเข้าไปตรวจสอบ ตัดสินใจในบางกรณีที่สำคัญมากๆ เป็นต้น
  • ตัวอย่าง: ในโรงงานอุตสาหกรรม AI ใช้แพลตฟอร์ม Orchestration เพื่อสื่อสารกับหุ่นยนต์และแจ้งเตือนมนุษย์เมื่อเกิดความผิดพลาด หรือด้านธุรกรรมที่มีความเสี่ยงด้านธุรกิจ (การเงิน) เราให้มนุษย์เข้าไปช่วยหุ่นยนต์ทำงานได้สำเร็จ

3. ระบบอัตโนมัติแบบ Long-tail Automation

Long-tail Automation หมายถึงการนำกระบวนการย่อยที่ซับซ้อนหรือไม่คุ้มค่ากับการทำอัตโนมัติในอดีตมาปรับให้มีประสิทธิภาพ ตัวอย่างเช่น การใช้ AI ในการวิเคราะห์ข้อมูลจำนวนมาก (Data Mining) หรือการสร้างข้อความที่เฉพาะเจาะจง (Context-aware Text Generation)

ศัพท์เทคนิคน่ารู้

  • Data Mining: กระบวนการค้นหาความรู้จากข้อมูลขนาดใหญ่
  • Context-aware Computing: ระบบที่สามารถเข้าใจบริบทและตอบสนองอย่างเหมาะสม
  • ตัวอย่าง: AI ช่วยจัดการคำขอสินเชื่อในธนาคารโดยตรวจสอบข้อมูลเอกสารและแนะนำการอนุมัติอย่างอัตโนมัติ

4. การเปลี่ยนแปลงโครงสร้างแรงงาน (Workforce Transformation)

องค์กรต่าง ๆ ต้องจัดการกับการเปลี่ยนแปลงแรงงาน โดยแบ่งงานที่ซ้ำซ้อนหรือที่สามารถทำอัตโนมัติได้ให้ AI ในขณะเดียวกัน มนุษย์จะถูกฝึกฝนเพื่อรับบทบาทใหม่ที่เกี่ยวกับการคิดเชิงกลยุทธ์และความคิดสร้างสรรค์

ศัพท์เทคนิคน่ารู้

  • Occupational Transition: การเปลี่ยนอาชีพหรือทักษะที่จำเป็น
  • Reskilling/Upskilling: การฝึกอบรมทักษะใหม่เพื่อรองรับการเปลี่ยนแปลง
  • ตัวอย่าง: บริษัทเทคโนโลยีฝึกอบรมพนักงานให้ใช้เครื่องมืออย่าง GitHub Copilot UiPath Autopilot ในการเขียนโค้ด หรือสั่ง robot ทำงานให้ อย่างง่ายๆ และมีประสิทธิภาพ

5. AI ในผลิตภัณฑ์องค์กร (Built-in AI)

ในอนาคต ซอฟต์แวร์องค์กรส่วนใหญ่จะมีฟีเจอร์ AI ฝังตัวเพื่อช่วยให้การทำงานมีประสิทธิภาพมากขึ้น เช่น AI Copilots ของ Microsoft 365 ที่สามารถช่วยเขียนเอกสาร ทำสไลด์สรุป สรุปวาระการประชุม และอื่นๆ

ศัพท์เทคนิคน่ารู้

  • Copilot หรือ UiPath Autopilot: เครื่องมือที่ช่วยสนับสนุนการทำงาน เช่น การเขียนหรือแก้ไขโค้ด
  • AI-powered Tools: เครื่องมือที่ขับเคลื่อนด้วย AI
  • ตัวอย่าง: Microsoft Copilot ช่วยให้ทีมงานประหยัดเวลาในการสร้างเอกสารและปรับปรุงคุณภาพงานได้อย่างมีนัยสำคัญ

6. การจัดการข้อมูลด้วย AI (Data Management Revolution)

ปริมาณข้อมูลที่มากเกินไป (Data Overload) เป็นปัญหาสำคัญ AI ช่วยจัดระเบียบข้อมูลผ่านเครื่องมือเช่น Knowledge Graphs และ Retrieval-Augmented Generation (RAG)

ศัพท์เทคนิคน่ารู้

  • Knowledge Graph: แผนภาพที่แสดงความสัมพันธ์ระหว่างข้อมูลในลักษณะกราฟ
  • RAG (Retrieval-Augmented Generation): เทคโนโลยีที่ช่วยให้ AI ดึงข้อมูลจริงมาใช้งานในกระบวนการสร้างคำตอบ
  • ตัวอย่าง: บริษัทที่ปรึกษาใช้ RAG ในการค้นหาข้อมูลลูกค้าแบบเรียลไทม์ ลดเวลาและเพิ่มความแม่นยำในการตอบสนอง

7. การกำกับดูแล AI (AI Governance and Regulation)

โลกกำลังก้าวเข้าสู่ยุคที่ AI ถูกกำกับดูแลอย่างเข้มงวดด้วยกฎหมาย เช่น การป้องกันการละเมิดลิขสิทธิ์ และการใช้ข้อมูลที่ไม่เหมาะสม

ศัพท์เทคนิคน่ารู้

  • AI Governance Framework: โครงสร้าง กรอบรูปแบบการกำกับดูแล AI ในองค์กร
  • Data Transparency: ความโปร่งใสในการใช้ข้อมูล

สรุป

การเข้าใจแนวโน้มทั้ง 7 นี้ไม่เพียงช่วยให้พวกเราเท่าทันเทคโนโลยี แต่ยังช่วยให้องค์กรสามารถใช้ AI และระบบอัตโนมัติให้เกิดประโยชน์สูงสุด การเพิ่มพูนความรู้เกี่ยวกับ use case ต่าง และ ศัพท์เทคนิคจะช่วยให้พวกเราไม่กังวล และพร้อมสำหรับอนาคตที่ AI และ Automation กลายเป็นหัวใจของทุกการดำเนินงาน

ขอบคุณเนื้อหาดีๆ โดย Automat

ที่มา UiPath Automation & AI Trend 2025